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Fluctuating Stresses
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Stress that arise due to the variation in magnitude of 
force with respect to time

𝜎𝑚 =
1

2
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

𝜎𝑎 =
1

2
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛



Fatigue Failure
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Failure < Ultimate tensile strength of the material

Time delayed fracture under cyclic loading:  Fatigue failure

Common examples

• Transmission 
shafts, 

• connecting rods,
• gears, 
• suspension springs,
• ball bearings



Fatigue Failure Regions
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Fine fibrous Coarse granular



Endurance limit
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Endurance limit is the maximum amplitude of completely 
reversed stress that the standard specimen can sustain for 
an unlimited number of cycles without fatigue failure

Fatigue life is defined as the number of stress cycles that 
the standard specimen can complete during the test 
before the appearance of the first fatigue crack



Fatigue Testing
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Low Cycle and High Cycle Fatigue

Department of Mechanical Engineering 7

0 cycle 0-103 cycles 103 -108 cycles



Low Cycle and High Cycle Fatigue
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Notch Sensitivity
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𝐾𝑡𝑓 =
𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑡𝑐ℎ 𝑓𝑟𝑒𝑒 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑡𝑐ℎ𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛

Notch sensitivity is defined as the susceptibility of a 
material to succumb to the damaging effects of stress 
raising notches in fatigue loading.

𝑞 =
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑣𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 𝑜𝑣𝑒𝑟 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝑞 =
(𝐾𝑡𝑓𝜎𝑜 − 𝜎𝑜)

(𝐾𝑡𝜎𝑜 − 𝜎𝑜) 𝐾𝑡𝑓 = 1 + 𝑞(𝐾𝑡 − 1)

Eqn 2.4 Eqn 2.5

Eqn 2.12(a)



Endurance limit: Estimation
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𝑆𝑒 = 𝐾𝑎𝐾𝑏𝐾𝑐𝐾𝑑𝑆𝑒
′

• 𝑆𝑒: endurance limit of a particular mechanical 
component subjected to reversed bending stress

• 𝑆𝑒
′ : endurance limit stress of a rotating beam 

specimen subjected to reversed bending stress
• 𝐾𝑎: Surface finish factor
• 𝐾𝑏: Size factor 
• 𝐾𝑐: Reliability factor
• 𝐾𝑑: Modifying factor accounting stress 

concentration factor



Surface finish factor (𝐾𝑎)
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• 𝐾𝑎: To account for the stress raisers due to 
the poor surface finish

• They are derating factors
• 𝐾𝑎 = 𝑎 𝑆𝑢𝑡

𝑏 (shigley and Mischke)

Surface finish a b

Ground 1.58 -0.085

Machined or cold drawn 4.51 -0.265

Hot-rolled 57.7 -0.718

As forged 272 -0.995

Coefficient values for steel



Size factor (𝐾𝑏)
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• 𝐾𝑏: To account for the increase in size
• For 2.79 mm ≤ d ≤ 51 mm

• 𝐾𝑏 = 1.24 𝑑 −0.107 (shigley and Mischke)
• For 51 mm ≤ d ≤ 254mm

• 𝐾𝑏 = 0.859 − 0.000873𝑑

Diameter (d) mm Kb

d ≤ 7.5 1

7.5 ≤ d ≤ 50 0.85

d > 50 0.75

Values of size factor



Reliability Factor (𝐾𝑐)
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• 𝐾𝑐: To account for the dispersion of data 
obtained from the experimental tests

• Standard deviation of test is 8% of mean value
• 𝐾𝑐=1, Reliability =50%

Reliability R (%) Kc

50 1.000

90 0.897

95 0.868

99 0.814

99.9 0.753

99.99 0.702

Reliability factor



Modifyng Factor accounting stress concentration (𝐾𝑑)
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• 𝐾𝑑: To account for the stress concentration

• 𝐾𝑑 =
1

𝐾𝑓

𝑆𝑒 𝑎 = 0.8 𝑆𝑒

Axial loading to rotating beam bending



Design for finite and infinite life (Fully reversed cycle)
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Case 1: Design for infinite life
Endurance limit becomes the failure criterion

Case 2: Design for finite life
A straight line AB drawn from (0.9 Sut) at 103

cycle to (Se) at 106 cycles on a log-log paper

• Locate point A and B

• Join AB

• Depending on life N obtain Sf

𝜎𝑎 =
𝑆𝑒
𝑓𝑠

𝜏𝑎 =
𝑆𝑠𝑒
𝑓𝑠



Problem 2.1
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A plate made of steel 20C8 (Sut=440 N/mm2) is hot 
rolled and normalised condition is shown in Figure. 
It is subjected to a completely reversed axial load of 
30 kN. The notch sensitivity factor q can be taken as 
0.8 and the expected reliability is 90%. The size 
facto is 0.85. The factor of safety is 2. Determine the 
plate thickness for infinite life



Cumulative damage in fatigue
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First set of cycle = n1

Stress in the first cycle = S1

Fatigue life with n1 cycle = N1

Second set of cycle = n2

Stress in the second cycle = S2

Fatigue life with n2 cycle = N2

xth set of cycle = nx

Stress in the xth set = Sx

Fatigue life with nx cycle = Nx 𝑛1
𝑁1

+
𝑛2
𝑁2

+ …… .+
𝑛𝑥
𝑁𝑥

= 1

Miners equation



Soderberg, Goodman and Gerber line
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Soderberg, Goodman and Gerber line
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Gerber line: A parabolic curve joining Se on the ordinate to Sut

on the abscissa 

Soderberg line: A straight line joining Se on the ordinate to Syt

on the abscissa 

Goodman line: A straight line joining Se on the ordinate to Sut

on the abscissa 

𝑆𝑎
𝑆𝑒

+
𝑆𝑚
𝑆𝑢𝑡

2

= 1

𝑆𝑚
𝑆𝑦𝑡

+
𝑆𝑎
𝑆𝑒

= 1

𝑆𝑚
𝑆𝑢𝑡

+
𝑆𝑎
𝑆𝑒

= 1



Modified Goodman Diagrams: Pure Bending or Tensile
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Modified Goodman Diagrams: Pure Torsional Load
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Fatigue Design Under Combined Loading
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𝜎2 =
1

2
𝜎𝑥 − 𝜎𝑦

2
+ 𝜎𝑦 − 𝜎𝑧

2
+ 𝜎𝑧 − 𝜎𝑥

2 + 6 𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2

Most general equation of distortion energy theory

For a 2D normal stress case

𝜎𝑚 = 𝜎𝑥𝑚
2 − 𝜎𝑥𝑚𝜎𝑦𝑚 + 𝜎𝑦𝑚

2

Combined bending and torsional case

𝜎𝑚 = 𝜎𝑥𝑚
2 + 3𝜏𝑥𝑦𝑚

2

𝜎𝑎 = 𝜎𝑥𝑎
2 − 𝜎𝑥𝑎𝜎𝑦𝑎 + 𝜎𝑦𝑎

2

𝜎𝑎 = 𝜎𝑥𝑎
2 + 3𝜏𝑥𝑦𝑎

2



Problem
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A transmission shaft carries a pulley midway between the two 

bearings. The bending moment at the pulley varies from 200 N-m to 

600 N-m, as the torsional moment in the shaft varies from 70 N-m to 

200 N-m. The frequencies of variation of bending  and torsional 

moments are equal to the shaft speed: The shaft is made of steel 

FeE400 (Sut = 540 N/mm2 and Syt = 400 N/mm2). The corrected 

endurance limit of the shaft is 200 N/mm2. Determine the diameter 

of the shaft using a factor of safety of 2.   



Impact Stresses
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Defined as a collision of one component in motion with a 
second component, which may be either in motion or at rest

Load which is applied rapidly to the machine component

• Energy released  (weight)= W(h+δ)

• Energy absorbed  (load × Deflection)= 
1

2
𝑃𝛿

Energy absorbed  = Energy released

𝑃

𝑊
= 1 + 1 +

2ℎ𝐴𝐸

𝑊𝑙



Factor of safety
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Reserve strength: 

𝑓𝑠 =
𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑠𝑡𝑟𝑒𝑠𝑠
=

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑙𝑜𝑎𝑑

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑙𝑜𝑎𝑑

• For ductile materials

• 𝑓𝑠 =
𝑆𝑦𝑡

𝜎

• For brittle materials

• 𝑓𝑠 =
𝑆𝑢𝑡

𝜎



Reason for Factor of safety
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• Uncertainty in magnitude of external 
force

• Variation in properties

• Variation in dimensions of the 
component

• Assumptions of material properties



Factor of safety: Magnitude Selection
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• Effect of failure
• Type of load
• Material of component
• Degree of accuracy in force analysis
• Reliability of the component
• Cost of the component
• Testing of machine element
• Service conditions
• Quality of manufacture



Stress state

Department of Mechanical Engineering 28



Mohr’s Circle
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Principal Stress
Principal shear 
stress????



Theories of Elastic failure
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Simple 
stress 
state

Complex 
stress 
state

• Maximum principal stress theory
• (Rankine’s theory)

• Maximum shear stress theory
• (Coulumb, Tresca and Guest’s 

theory)
• Distortion energy theory

• (Huber von mises and Hencky’s
theory)

• Maximum strain theory
• (St. Venant’s theory)

• Maximum total strain energy 
theory
• (Haigh’s theory)



Maximum principal stress theory (Rankine’s theory) 
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The failure of mechanical component subjected to bi-axial 
or tri-axial stresses occurs when the maximum principal 
stress reaches the yield or ultimate strength of the 
material.

𝜎1 > 𝜎2 > 𝜎3If,

𝜎1 = 𝑆𝑦𝑡 or 𝜎1 = 𝑆𝑢𝑡



Maximum shear stress theory (Guest’s theory)
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The failure of mechanical component subjected to bi-axial 
or tri-axial stresses occurs when the maximum shear 
stress at any point in the component becomes equal to 
the maximum shear stress in  the standard specimen of 
the tension test, when yielding starts

𝜏𝑚𝑎𝑥 =
𝜎1
2
=
𝑆𝑦𝑡

2

Yield strength in shear is half of the 
yield strength in tension



Mohr’s diagram
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Maximum shear stress theory (Guest’s theory)
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𝜏12 =
𝜎1 − 𝜎2

2
=
𝑆𝑦𝑡

2

𝜏23 =
𝜎2 − 𝜎3

2
=
𝑆𝑦𝑡

2

𝜏31 =
𝜎3 − 𝜎1

2
=
𝑆𝑦𝑡

2

𝜎1 − 𝜎2 = 𝑆𝑦𝑡
𝜎2 − 𝜎3 = 𝑆𝑦𝑡
𝜎3 − 𝜎1 = 𝑆𝑦𝑡

𝜎1 − 𝜎2 = ±𝑆𝑦𝑡
𝜎2 = ±𝑆𝑦𝑡
𝜎1 = ±𝑆𝑦𝑡



Distortion energy theory (Von Mises and Hencky’s)
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𝑈 =
1

2
𝜎1𝜖1 +

1

2
𝜎2𝜖2 +

1

2
𝜎3𝜖3

𝑈 =
1

2𝐸
(𝜎1

2 + 𝜎2
2 + 𝜎3

2) − 2𝜇(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1)

The theory states that the failure of mechanical component 
subjected to bi-axial and tri-axial stresses occurs when the 
strain energy of distortion per unit volume at any point in the 
component, becomes equal to the strain energy of distortion 
per unit volume in the standard specimen of tension-test, 
when yielding starts. 

Total strain energy of the cube, U



Distortion energy theory (Von Mises and Hencky’s)
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𝑆𝑦𝑡
2 = 𝜎1

2 − 𝜎1𝜎2 + 𝜎2
2

𝑎2 = 𝑥2 − 𝑥𝑦 + 𝑦2



Comparison
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Ductile materials
Von Mises and Guest’s theory
Brittle materials
Rankine’s theory
Von Mises 
Precise determination on all 
quadrants
Close limit determination
Guest theory is on 
conservative side
Rankine sometimes unsafe



Maximum Principal Strain theory (St. Venant’s theory)
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The theory states that failure or yielding occurs at point in  a 
member when maximum principal (or normal) strain in a bi-
axial or tri-axial stress system  reaches the limiting value of 
strain as determined from simple tension test

𝜀𝑚𝑎𝑥 =
𝜎1
𝐸
− 𝜇

𝜎2
𝐸

𝜀𝑚𝑎𝑥 =
𝑆𝑦𝑡

𝐸

𝑆𝑦𝑡 = 𝜎1 − 𝜇𝜎2

*Not commonly used



Maximum  Strain Energy theory (Haigh’s theory)
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The theory states that failure or yielding occurs at point in  a 
member when the strain energy per unit volume in a bi-axial 
or tri-axial stress system  reaches the limiting strain energy as 
determined from simple tension test

𝑈1 =
1

2𝐸
𝜎1

2 + 𝜎2
2 − 2𝜇𝜎1𝜎2 𝑈2 =

1

2𝐸
𝑆𝑦𝑡

2

𝜎1
2 + 𝜎2

2 − 2𝜇𝜎1𝜎2 = 𝑆𝑦𝑡
2



Problem 2.2
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A wall bracket with a rectangular cross section is shown in 
Figure. The depth of the cross section is twice of the width. 
The force P acting on the bracket at 600 to the vertical is 5 
kN. The material of the bracket is grey cast iron FG 200 and 
the factor of safety is 3.5. Determine the dimensions of the 
cross-section of the bracket. Assume maximum normal 
stress theory.



Problem 2.3
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The shaft of an overhang crank subjected to a force P of 1 
kN is shown in Figure. The shaft is made of plain carbon 
steel 45C8 and the tensile yield strength is 380 N/mm2. 
The factor of safety is 2. Determine the diameter of the 
shaft using the maximum shear stress theory. 



Creep
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Creep Strength of the material  is defined as the 

maximum stress that the material can withstand for a 

specified length of time without excessive deformation

Creep rupture strength of the material is the maximum 

stress that the material can withstand for a specified  

length of time without rupture



Creep

Department of Mechanical Engineering 43

A

B

C

D

AB: Strain 
hardens

BC: highly 
mobile 
dislocations 
counteract the 
strain hardening

CD: formation of 
voids along grain 
boundariesO



Thermal Stresses
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Stress that arise due to the variation in temperature

𝜎 = −α𝐸∆𝑇For a rod,

For a plate (2D)

For a box (3D)

𝜎𝑥 = 𝜎𝑦 =
−α𝐸∆𝑇

1 − 𝜇

𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 =
−α𝐸∆𝑇

1 − 2𝜇


